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We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM).
The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mir-
ror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires
that comprise the grid, the phase delay derived from the geometric separation between the mirror and
the grid is sufficient to characterize the device. However, outside of this range, additional parameters
describing the polarizing grid geometrymust be included to fully characterize the modulator response. In
this paper, we report test results of a VPM at wavelengths of 350 μm and 3 mm. Electromagnetic simula-
tions of wire grid polarizers were performed and are summarized using a simple circuit model that
incorporates the loss and polarization properties of the device.
OCIS codes: 350.1270, 120.5410, 230.4110, 240.5440, 050.6624.

1. Introduction

Astronomical polarimetry in the far-infrared through
microwave portion of the electromagnetic spectrum
is a useful tool for probing the physics of interstellar
dust, investigating the role of magnetic fields in star
formation, and characterizing the radiation from the
early universe. In each of these cases, polarization
modulation is an important element of instrument
design, because it enables a precision measurement
by encoding the polarization information and thus
separating it from the typically larger unpolarized
background signal.

Variable-delay polarization modulators (VPMs)
operate through the introduction of a controlled,
variable phase delay between two orthogonal linear
polarizations. This is accomplished in recent work by
placing a polarizing grid in front of a mirror and
varying the separation [1,2], although other related
architectures have been used for polarization modu-
lation via introduction of a variable electrical delay

[3,4]. For a single frequency, the polarization transfer
function of the VPM is a sinusoidal function of the
phase delay between the two orthogonal polariza-
tions. The key to understanding the polarization
transfer function is to determine how the phase delay
is related to the grid-mirror separation, since the lat-
ter is the quantity that is directly measurable in an
instrumental setup. In practice, the polarization re-
sponse of a specific modulator can be measured to
produce a template for use in reducing astrophysical
data. As such, the work presented here is not re-
quired for demodulating a time-ordered data set.
The utility of the model described here is that it al-
lows calculation of the achievable optical response. It
provides both guidance regarding the modulator’s
sensitivity to design parameters and validation me-
trics for the observed instrumental performance. In
addition to VPMs, grid-mirror systems have been im-
plemented in a variety of other applications [5–13].
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Elements of the analysis presented here are applic-
able to these systems as well.

In this paper, the polarization transfer function for
a single modulator from the Hertz-VPM instrument
is measured at 350 μm and 3 mm. The observed re-
sponse is well-characterized by a transmission-line
model. This work represents a refinement of previous
results [2] in which it was qualitatively shown that
VPMs modulate polarization with reasonable effi-
ciency and without introduction of major artifacts.
Here, we present new lab tests of Hertz-VPM col-
lected after improving the optical alignment. We de-
monstrate quantitative agreement between the
measured polarization transfer function and a trans-
mission-line model. Also, we show that the overall
modulation efficiency of Hertz-VPM is within ∼2%
of the expected value at 350 μm and in closer agree-
ment at 3 mm. The organization of the paper is as
follows: In Section 2, we briefly review the principle
of operation of the VPM. In Section 3, we describe the
circuit model for the VPMs. In Section 4, we discuss
the current state-of-the-art for analytical models
used to calculate the circuit parameters and include
numerical simulations to overcome their limitations.
In Sections 5 and 6, this model is applied to measure-
ments of the VPM, and the results are discussed in
Section 7.

2. The Variable-Delay Polarization Modulator (VPM)

The VPM consists of a polarizing grid positioned
parallel to and in front of a mirror. A change in
grid-mirror separation corresponds to a change in in-
troduced phase between two linear orthogonal polar-
izations. The device is shown in Fig. 1. Choosing
coordinates such that Stokes Q gives the difference
between the polarization states parallel and perpen-
dicular to the VPM wires, the polarization transfer
function can be expressed as

U 0 � U cos δ�d� � V sin δ�d�: (1)

Here U and U 0 are the input and output Stokes U
parameter, and V is the input circular polarization.
Here δ�d� is the electrical phase delay that is intro-
duced between the polarized components that are
reflected and transmitted by the grid, respectively,
when they are recombined at the output port of the
device. This is the phase of interest when using the
VPM as a modulator.

In the limit in which the wavelength is much lar-
ger than the length scales that characterize the local
grid geometry, the VPM phase is proportional to the
path difference between the two polarizations,

δ∞�d� �
4πd
λ cos θ; (2)

where θ is the incident angle, as shown in Fig. 1.
Here, the ∞ subscript indicates that this relationship
holds in the long wavelength limit. In many polariz-
ing grid applications, the size of the wires relative to
the wavelength is large enough to produce measur-
able deviations from the phase relation given in
Eq. (2).

We assume throughout this paper that the grid
wires are uniform, infinite in extent, and lie in a
plane. Diffraction grating lobes are negligible when
the wire radius, a, and grid constant or center-to-
center wire pitch, g, are much smaller than the
wavelength of the incident radiation. In this limit,
the structure has a homogeneous response for each
polarization.

3. A VPM Model

At the highest level, our goal is to describe the polar-
ization modulation properties of the VPM. To do this,
several details are worth briefly considering before
we proceed. Both Jones matrices [14,15] and Mueller
matrices allow one to propagate the polarization
properties through a system having no reflections
between elements. These two descriptions can be
shown to be mathematically equivalent [16]. A polar-
ization modulator, such as the VPM, that inherently
relies on the interference of the fields in the device is
not directly amenable to this analysis approach. To
incorporate the influence of multiple reflections in
such a system, the “ABCD” matrix approach can be
employed. The ABCD matrix is also known as a
transfer, transmission-line, chain, or characteristic
matrix [17–20] in the microwave and optical litera-
ture. Physically, this matrix formulation links the
propagation of the input and output electric and
magnetic fields through a given component. Once the
modulator is modeled with these tools, it is straight-
forward to calculate a Jones matrix for the entire sys-
tem [21], assuming that the input and output ports
are matched.

From an instrumentation perspective, an “ideal”
polarizing grid perfectly separates orthogonal linear
polarization components with a response that is inde-
pendent of frequency. That is, the grid perfectly trans-
mits the polarization component having the electric

Fig. 1. The VPM consists of a polarizing grid placed in front of
and parallel to a planar mirror. The polarization parallel to the
grid wires is reflected by the grid. The orthogonal linear polariza-
tion passes through the grid and is reflected off themirror. The two
components are recombined at the output port with a relative
phase delay that is dependent upon the grid-mirror separation,
d. The wire grid spacing or pitch is indicated by g.
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field perpendicular to the grid wires and perfectly re-
flects the component having the electric field parallel
to the grid wires. The former corresponds to zero im-
pedance contrast between free space and the grid; the
latter corresponds to an infinite impedance contrast.
For physically realizable grids, the achievable impe-
dance contrast for each of the two polarizations
depends on the electromagnetic properties and geo-
metry of the structure. In the limit the wire radius
and separation are finite compared to thewavelength
of the incident radiation, the response becomes de-
pendent on frequency. Motivated by the observation
that the wire grid is a polarization- and frequency-
selective surface, we model the structure using a
transmission-line approach.

We model the polarizing grid using a circuit repre-
sentation [22] of the VPM as shown in Fig. 2. We nor-
malize all impedances to that of free space,
Z0 � 377 Ω per square. For the polarizing grid, the
transmission and reflection of the electric field com-
ponent parallel to the grid wires can be represented
by an inductive circuit. The circuit reactances used
are defined in Fig. 2. We compute the ABCD matrix
from these as follows:0

@1� iXLC
iXL�RL

�
2� iXLC

iXL�RL

�
iXLC

1
iXL�RL

1� iXLC
iXL�RL

1
A: �3�

Likewise, the grid’s effect on the polarization compo-
nent having its electric field perpendicular to the grid
wires can be represented by a capacitive circuit and
is given by

1

iXCC �
�
2� XC

XCC

�
RC

0
BB@
iXC � iXCC �

�
2� XC

XCC

�
RC �2RC � iXCC�iXC

2� XC
XCC

�
2� XC

XCC

�
RC �

�
1� XC

XCC

�
iXCC

1
CCA: �4�

Each of these matrices can be cascaded with the
transmission matrices for a free-space delay and a
short. The resulting matrix is employed to calculate
the reflection coefficients for each polarization, Γ‖

and Γ⊥, as a function of frequency. The Jones matrix
for the VPM can then be expressed as

�J �
�
Γ‖ 0
0 Γ⊥

�
: (5)

The density matrix describing the polarization state
may be written as a linear combination of Stokes
parameters (I, Q, U, V) [15].

D � I
�
1 0
0 1

�
�Q

�
1 0
0 −1

�
�U

�
0 1
1 0

�

� V
�
0 −i
i 0

�
: (6)

The density matrix of the incoming light can be
mapped to that of the outgoing light, D0, by using
the system’s Jones matrix �D0 � �J† �D �J : This model
is applicable for normal incidence. In the more gen-
eral case of non-normal incidence, it is convenient to
parameterize the model in terms of the incidence an-
gle, θ, and the angle between the grid wires and the
plane of incidence, ϕ. See Fig. 3. This general case
can be calculated using the above formalism along
with a procedure similar to that described by Gold-
smith [18], where the free-space TE and TM polari-
zations are projected onto the grid wires. The
polarization separation then occurs in the basis of
the wires, as done above.

If the incidence angle is nonzero, there are two ef-
fects. First, the length of the grid-mirror separation
in the transmission line is multiplied by cos θ.
Second, it is necessary to take into account the differ-
ences at the grid interface for the TM and TE polar-
izations. For the case of the transverse magnetic
(TM) polarization mode, the effective impedance is
altered from the free-space value by a factor of
cos θ. This is due to the fact that the electric field that
is projected onto the plane is smaller than the freely
propagating value. For the transverse electric (TE)
polarization, it is the magnetic field vector that is

projected into the plane, and so the impedance differs
from that of free space by a factor of 1∕ cos θ.

A simple case that one can consider for nonzero in-
cidence angle is that where the wires are either par-
allel or perpendicular to the plane of incidence. In
this case, each of the TE and TM modes correspond
to only one of the circuits described above. For exam-
ple, if the wires are parallel to the plane of incidence,
the TE and TM modes correspond to the capacitive
and inductive circuit elements, respectively. For a
general grid rotation angle ϕ, four circuit models
must be considered utilizing all of the combinations
of (TM,TE) and (inductive, capacitive). After the
transmission matrices are found for the two trans-
mission lines in Fig. 2, scattering parameters can
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be determined. Once the scattering matrices are
found for the VPM in each of these four cases, we
can combine the results into a single Jones matrix,

�J�d� �
�
cos ϕ − sin ϕ
sin ϕ cos ϕ

��
1 0
0 −1

�� ΓTM
‖

�θ;d� cos ϕ ΓTE
‖

�θ;d� sin ϕ
−ΓTM

⊥
�θ;d� sin ϕ ΓTE

⊥
�θ;ϕ� cos ϕ

�

�
� ΓTM

‖
�θ;d�cos2ϕ − ΓTM

⊥
�θ;d�sin2ϕ �ΓTE

‖
�θ;d� � ΓTE

⊥
�θ;d�� cos ϕ sin ϕ

�ΓTM
‖

�θ;d� � ΓTM
⊥

�θ;d�� cos ϕ sin ϕ ΓTE
‖

�θ;d�sin2ϕ − ΓTE
⊥

�θ;d�cos2ϕ
�
: (7)

This Jones matrix maps the incident electric field
�ETM ETE �T to the reflected field �ETM0

ETE0 �T .
The resultant polarization transformation for the
system can be computed from �D0 � �J† �D �J.

4. Circuit Parameter Values

The circuit topology described above is physically
motivated; however, circuit parameters for the grid
are required to analyze the response of the VPM.
Many treatments found in the literature for wire grid
polarizers consider a simple analytically treatable

limiting case [8,22–24]. These models assume no dif-
fraction, λ > 2g, little or no azimuthal dependence of
current density on the wires, a ≪ λ, and that the grid

filling fraction is small, 2a∕g < 1∕2π. However, at
millimeter and submillimeter wavelengths, realiz-
able grid structures often violate the third condition,
as indicated in Fig. 4. A survey of practical grid po-
larizers indicates that filing fractions in the range
0.3 < 2a∕g < 0.8 are available and achieve high po-
larization isolation. Such grids are outside of the
range of applicability of the perturbation-based mod-
els referred to above. An interesting extension of this
approach utilizing higher-order impedance boundary
conditions applicable for sparse grids has been ex-
plored [25]. Green’s function and lattice-sum [26–29]
methods enable more accurate treatments without a
need for these approximations. Here we employ a hy-
brid numerical approach that allows us to analyze
the behavior of the wire grid polarizer used for this
work. In this section, we first revisit the classic anal-
ytical treatment of polarizing grids and motivate the
need for a more rigorous treatment.

A. Sparse Grid Approximation

As an example of commonly employed analytical
methods, we explicitly give the expressions for the

Fig. 2. In the limit the wavelength is large compared to the wire pitch, the VPM can bemodeled by two independent circuits. An inductive
circuit is used for the polarization component having the electric field parallel to the grid wires (top). A capacitive circuit is used to model
the polarization component having the electric field perpendicular to the grid wires (bottom).

Fig. 3. The geometry for the general polarizing grid lying in the
x-y plane is shown.
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circuit elements fromMarcuvitz [22]; however, this is
representative of the approximations used in qua-
sioptical treatments of grids. In the following, all
reactances are normalized with respect to the impe-
dance of free space. Given a wire radius a and a se-
paration or “pitch,” g, the circuit elements for the
polarization parallel to the wires (the “inductive”
mode; Marcuvitz [22], Section 5.21, “Inductive
Posts”) are given by

XLC � −
g
λ

�
2πa
g

�
2
; (8)

XL � g
λ

�
ln

g
2πa�

X∞
m�1

�
1��������������������

m2 − �gλ�2
q −

1
m

��
: (9)

The series for the inductive reactance in Eq. (9) is ra-
pidly convergent. In the limit of applicability, this
series can be approximated by ∼0.6 · �g∕λ�2 and is
a small perturbation. As a result, the factor in curly
braces, which we identify with the quasi-static induc-
tance, is essentially frequency-independent.

For the polarization having the electric field per-
pendicular to the wires (the “capacitive” mode;
Marcuvitz [22], Section 5.13, “Capacitive Posts”),
the reactive circuit elements are given for a symme-
trically centered capacitive post [22]:

XCC � −
λ
g

�
2
�

g
2πa

�
2
A2

�
; (10)

XC � −
λ
g

�
2
�λ
g

�
2
�

g
2πa

�
2
A1 −

1
4

�
2πa
g

�
2 1
A2

�
−1
; (11)

where A1 and A2 for normal incidence are defined as

A1�1

�1
2

�
2πa
λ

�
2
�
ln
�

g
2πa

�
�3
4
�
X∞
m�1

�
1�������������������

m2−�gλ�2
q −

1
m

��
;

(12)

A2 � 1 −
1
2

�
2πa
λ

�
2
�
ln
�

g
2πa

�
−
11
4

�
�

�
2πa
g

�
2

×
�
1
24

−

X∞
m�1

�
m −

1
2m

�
g
λ

�
2
−

������������������������
m2 −

�
g
λ

�
2

s ��
:

(13)

The circuit parameters given above are plotted as
functions of the geometric filling fraction, 2a∕g, in
Fig. 4. In plotting the circuit parameters, wemultiply
the reactances by a factor of λ∕g or g∕λ for inductive
and capacitive components, respectively. This separa-
tion between wavelength dependence and the struc-
ture’s geometry is anticipated in the quasi-static
limit (i.e., the limit in which each circuit element in

the model can be treated as a discrete frequency-
independent component). The triangles at the bottom
of the figure indicate typical values of grids employed
in the submillimeter and millimeter, and the vertical
gray linemarks the position at which 2a∕g � 1∕π. We
note that the expression for the shunt inductance is
zero at this point and negative beyond it. This is a
manifestly unphysical result, as the wires do not ac-
tually become “capacitive” for the parallel polariza-
tion, but approach the inductance of a corrugated
conductive plate. Thus, a different approach is re-
quired in this regime, as the limit of applicability
indicated by Marcuvitz is violated.

B. Numerical Simulations of Grid Performance

In order to understand the inductance and loss of
wire grids, we perform numerical simulations as a
function of the filling fraction over the range
0.02 < 2a∕g < 1. The numerical grid simulations
were carried out with Computer Simulation Technol-
ogy (CST) Microstripes Time-Domain Transmission-
Line Matrix (TLM) solver and Ansoft High
Frequency Structural Simulator (HFSS). See Fig. 5
for the electromagnetic configuration and the bound-
ary conditions used for modeling each polarization.
We consider the grid’s absorption from the structure
in the limit where the field penetration depth is
small compared to the wire diameter and the inci-
dent wavelength is greater than two times the wire
pitch. In this limit the higher-order Floquet harmo-
nics or grating lobe responses are absent, and the
fields are quasi-static in nature and a perturbation
on the lossless case.

Wheeler’s incremental inductance rule [30] can be
applied to compute the resistive losses from the wires
in the grid. This approach implicitly assumes that
the current distribution on the conductors does not
vary appreciably over distances comparable to the
thickness of the wire and is a convenient parameter-
ization. This condition is satisfied for a wire having a

Fig. 4. The Marcuvitz circuit parameters are plotted as functions
of the geometric filling fraction, 2a∕g. The vertical gray line is
shown at 2a∕g � 1∕π. The shaded region indicates the region in
which the Marcuvitz approximation ceases to hold [22]. Triangles
indicate typical values of 2a∕g for grids constructed for submilli-
meter and millimeter use.
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well-developed skin effect, δ ≪ a, in the single-mode
limit. The anticipated form can be expressed as a pro-
duct of two separable functions: the first dependent
on the grid filling factor, 2a∕g, and the second a func-
tion of skin depth over the wavelength, δ∕λ. Guided
by this physical insight, we proceed to model the grid
in the single-mode approximation to further explore
the scaling properties of the grid inductance and loss.

The power reflection coefficient, R, from the impe-
dance presented by the shunt reactance of the grid,
ZL � RL � iXL, is

R � jS11j2 �
���� −1
1� 2ZL

���� � 1

�1� 2RL�2 � �2XL�2
; (14)

where all impedances are normalized to Z0. The
resulting reflection phase is

ϕr � π − arctan
�

ℑ�2ZL�
1�ℜ�2ZL�

�

� π − arctan
�

2XL

1� 2RL

�
: (15)

For a near optimal grid geometry, the impedance con-
trast with respect to free space, 2ZL ≪ 1, and the
resultant reflection phase is approximately π. Simi-
larly, the power transmission can be expressed as

T � jS21j2 �
���� 2ZL

1� 2ZL

����2 � �2RL�2 � �2XL�2
�1� 2RL�2 � �2XL�2

;

(16)

and the power absorption, A � 1 − R − T � 1 − jS11j2
−jS21j2, is computed from conservation of energy.
Here, Sij are the complex scattering parameters
for the structure. A corresponding set of expressions
can be written for the capacitive case. We note the
ratio of the absorptance over the reflectance can be
expressed as

A
R

� 4RL � η 4RS

Z0
� η 4πδλ ; �17�

where we recall from Fig. 2 that RL is the inductive
mode’s resistance normalized to the impedance of
free space. The bulk surface resistivity of the metal
is RS � 1∕σδ, η is the grid loss efficiency, and λ is the
observation wavelength. The field penetration depth,
δ �

���������������
2∕μσω

p
, is computed from the metal’s perme-

ability, μ, electrical conductivity, σ, and the observa-
tion frequency, ω. It is informative to consider the
dimensionless ratio that occurs in the circuit model
above in terms of this parameterization:

4RS

Z0
� 4

���������������
ωμ∕2σ

p
��������
μ∕ϵ

p � 4πδ
λ : �18�

The expression on the right is related to the Hagen–
Ruben emissivity formula [31]. This can be derived
from Fresnel coefficients and identified as the emis-
sivity from a bulk metal at normal incidence. This
approximation is valid in the limit of low emissivity.
Equation (18) links the circuit theory to the interac-
tion between the materials and the electromagnetic
fields. We see that the loss efficiency, η �
�A∕R��4πδ∕λ�−1, is the loss of the grid relative to a flat
sheet made of the same material. We compute the
scattering parameters as a function of the grid filling
factor and frequency and derive equivalent circuit
parameters. In Fig. 6, we show the grid loss factor,
the grid shunt reactance, and the grid reflection
phase appropriately normalized to remove the wave-
length dependence as a function of the grid filling fac-
tor. This scaling is anticipated and observed in the
quasi-static limit for these circuit elements.

For the perpendicular illumination case, we find a
grid loss factor, η⊥ � 2a∕g. For the parallel illumina-
tion case, some care is required—the conductive
wires effectively define a finite thickness aperture.
For this configuration, the influence of the waveguide
cutoff has a nonnegligible influence on the grid’s ab-
sorption properties, and we find its influence results
in a grid loss factor of η‖ � γ∕tanh�γπ · 2a∕g� for this
polarization. Here, γ ≃ 1.15. In referring to Fig. 6, we
note that this differs from previous grid loss factors
reported in the literature. For example, for infinitely
thin strips, Ulrich [32] finds η‖ � g∕2a. For small fill-
ing factors, this expression and the one derived above
have the same slope; however, in the limit 2a∕g → 1,
the influence of the exclusion of the fields by the grid
wires has a pronounced influence on the response.
This behavior is also observed in our numerical simu-
lations. We note that within the context of the planar
waveguide model [30], by symmetry, the field config-
uration for this polarization is physically equivalent
to that of a microstrip via [33].

The numerical approach described here was pur-
sued to overcome and understand the limitations of
the perturbation expansions in a∕λ [22–24] and δ∕λ
[8]. The normalized reactance, Xn, of the inductive
component is computed in the range of interest
and is plotted as a function of 2a∕g in the middle
panel of Fig. 6. For the Marcuvitz model that is also
shown, Xn becomes negative for 2a∕g > 1∕π, which is

Fig. 5. The unit cells used for the simulation in both the inductive
(left) and capacitive (right) modes are shown. The large arrow in
each case indicates the direction of the incident electric field in the
simulation. “Perfect-E” and “Perfect-H” indicate the use of perfect
electric and magnetic mirrors, respectively, on the boundaries of
the unit cell. Plane wave illumination of the unit cell with these
boundary conditions allows representation of an infinite grid for
λ > 2g.
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a symptom of a failure of the asymptotic expansion
and anticipated from the restrictions on the analyti-
cal expression as specified [22]. This generic behavior
is present in other analytical treatments that are ex-
pansions in a∕λ [8,23,24] and anticipated since the
derived expressions only have logarithmic accuracy.
Higher-order terms are required in this regime; e.g.,
see Landau and Lifshitz ([34], Section 33) and Grover
[35]. However, as g∕λ → 0, jXLj → 0 as well, and as a
result, this particular modeling detail is of reduced
importance. This analysis suggests that the observed
monotonic flattening of η‖ and Xn at larger values of
2a∕g result in high performance grids; however, the
reflectivity and transmissivity are more effectively
improved by reductions in g∕λ.

5. 350 μm VPM Tests

A. Experimental Setup

Preliminary characterization of the Hertz-VPM in-
strument has been reported [2]. Our setup is similar

to that used previously and is schematically depicted
in Fig. 7. A chopped blackbody is polarized by a wire
grid and focused onto the Hertz polarimeter that si-
multaneously measures horizontal and vertical po-
larizations. The VPM under test is placed near a
pupil in a collimated beam within the fore optics that
couple the source to the Hertz cryostat. For a given
grid-mirror separation, the polarization is modu-
lated by rotating a cold half-wave plate (HWP) in dis-
crete steps. The aperture of the blackbody is sized to
roughly fill a single Hertz detector. Inside of the
Hertz cryostat, the polarization is separated into
two linear orthogonal components by a wire grid
analyzer. Both the transmitted (T) and reflected
(R) components are detected by bolometers.

The polarization transfer function of the VPM is
measured as follows. At various grid-mirror separa-
tions, the output linear polarization is measured
using the Hertz polarimeter. The normalized Stokes
parameters are then reported as a function of the
grid-mirror separation.

B. Data Reduction

At each grid-mirror separation, the basic data analy-
sis pipeline is similar to that described in [36].
However, we describe the process in some detail since
there are some deviations that are associated with
the difference between laboratory measurements
and those done astronomically. At a single HWP po-
sition, 16 “frames” are recorded. Each frame consists
of two co-added “chops” or on-off differences. In our

Fig. 7. The main elements of the experimental setup for the
350 μm test are shown [2]. Radiation from a blackbody source is
polarized by a wire grid polarizer having wires oriented at an angle
of 45° with respect to the plane of the page. A chopper modulates
the intensity of the signal. The radiation is collimated prior to
being processed by the VPM. Upon exiting the VPM, the radiation
is relayed to the Hertz cryostat. Inside, the radiation passes
through the HWP and the bandpass filter before being diplexed
into two orthogonal linear polarizations. A bolometer detects
the signal in each polarization.

Fig. 6. (Top) The grid loss factor, η, is plotted as a function of the
geometric filling factor for awire grid. BothHFSS andMicrostripes
simulations are shown for the cases of the electric field perpendicu-
lar to and parallel to the grid wires. The filling factors for typical
polarizing grids are plotted for comparison. (Middle) The reactance
for the inductive mode is shown as a function of the geometric
filling factor. A useful interpolation function is Xn ≃ 0.51 − 1.19
ln�2πa∕g� � 0.53�ln�2πa∕g��2 � 0.11�ln�2πa∕g��3. For comparison,
the Marcuvitz model is shown, as well as the measured inductance
for the grid. (Bottom) The normalized reflection phase of the induc-
tive mode is plotted as a function of geometric filling factor for the
HFSS simulation. In this case, we find ϕn ≃ 1 −

����������������������������
3.545�2a∕g�

p
. In

each of the panels, the condition 2a∕g � 1∕π is denoted by a dashed
vertical line. Triangles indicate typically manufactured grid
geometries.
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laboratory setup, the chopper phase was observed to
drift relative to the commanded transistor-transistor
logic (TTL) signal from the data system. To correct
for this, the in-phase data and the quadrature data
were both used, and the signals for a single frame in
the R and T arrays are

ri�αj� � ��rin-phasei �αj��2 � �rquadi �αj��2�
1
2; (19)

ti�αj� � ��tin-phasei �αj��2 � �tquadi �αj��2�
1
2: (20)

Here, αj is the value of the HWPangle at the jth HWP
position. This technique mitigates the problems as-
sociated with phase drift in the chopper.

The frames recorded for each HWP are averaged
separately for each of the R and T signals,

R�αj� �
1
N

XN
i�1

ri�αj�; (21)

T�αj� �
1
N

XN
i�1

ti�αj�: (22)

Here, N � 16 is the number of data frames taken at
each HWP position. This process is repeated for each
of six HWP positions (nominally, 0°, 30°, 60°, 90°,
120°, and 150°). The relative gain between the R
and T bolometers is calculated as the ratio of the
sum of all the data in the R bolometer and that of
the T bolometer:

f �
P

j R�αj�P
j T�αj�

: (23)

The polarization signal is then calculated using both
the R and T bolometers. This combination aids in the
removal of common-mode noise in the system,

S�αj� �
R�αj� − f T�αj�
R�αj� � f T�αj�

: �24�

For each grid-mirror separation, the HWP polari-
zation signal in Eq. (24) was fit to the modulation
function

S�α� � ϵ1�q cos 4α� u sin 4α� � ϵ2 cos 2α
� ϵ3 sin 2α: �25�

The parameters q≡Q∕I and u≡U∕I are the normal-
ized linear Stokes parameters in a rotational basis
for which q defines the difference in polarization
components perpendicular to and parallel to the grid
wires of the VPM.We have explicitly included the lin-
ear polarization efficiency, ϵ1. The system was found
to be dominated by drifts on the time scale associated
with the HWP cycle. To account for this, error esti-

mates are determined by goodness-of-fit of the data
to Eq. (25).

For the purposes of fitting, ϵ2 and ϵ3 are orthogonal
to q and u and are thus discarded for the primary
analysis. However, to verify our understanding of
the system, it is worth briefly exploring their physi-
cal origin that stems from well-understood nonideal
behavior of the HWP [37].

Because the zero angle of α is set by the VPM grid
wires and not the fast axis of the HWP, ϵ2 and ϵ3 are
linked by a rotation to coupling to both unpolarized
flux and circular polarization,

�
ϵ2
ϵ3

�
�

�
cos 2χ sin 2χ
− sin 2χ cos 2χ

��
ϵ02
ϵ03

�
: (26)

Here, χ is the angle between the VPM wires and the
fast axis of the HWP. The factor ϵ02 is the coupling
between unpolarized flux and the polarization signal
due to bi-attenuance in the HWP. The factor ϵ03 is
proportional to the circular polarization (Stokes V)
incident on the HWP. The response of a single-layer
HWP, being a function of the birefringence of the
crystal (Δn) and its thickness, is only ideal at a single
frequency. Deviation from perfect matching between
the HWP center frequency and that of the band-
defining filter as well as the details of the input spec-
trum can both cause some leakage between circular
and linear polarizations.

The VPM provides a means for separating the two
effects. As the grid-mirror separation is varied, ϵ03 will
vary with phase delay, while ϵ02 will be unmodulated.
An unmodulated offset was not observed, implying an
upper limit of ϵ02 < 0.01. From the modulated signal,
we find ϵ03 ∼ 0.2. At this level, a corresponding reduc-
tion of the HWP response to linear polarization is ex-

pected. We calculate this effect to be
��������������
1 − ϵ023

q
� 0.98,

thus resulting in an efficiency reduction of ∼2%. This
is consistent with previous characterization of the
Hertz polarimeter [38,39]. In the test configuration
with the VPM, the HWP was exposed to much larger
amounts of circular polarization than in an astronom-
ical instrumentation setting, thus emphasizing this
otherwise small effect.

C. Systematic Offset Removal

In our test configuration, there are three aluminum
mirrors between the source grid and the VPM having
incidence angles ∼20°. From this we estimate an in-
duced polarization of <0.3% that is primarily in the
�q direction. Instrumental polarization between the
VPM and HWP would lead to a small change in the
efficiency of the system. From previous laboratory
measurements [2], we estimate a resulting systema-
tic uncertainty in the polarization efficiency of <1%.

Initiallyweobserved that Stokesq exhibited amod-
ulation as a function of grid-mirror separation that
had a similar modulation pattern to that anticipated
for circular polarization. This effect was observed at
the 5% level. By rotating the Hertz cryostat by 90°
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and remeasuring, this effect was found to switch
signs, indicating some birefringence in either the
lenses or the pressure window in the cryostat. Since
the axis of such a birefringent element could a priori
be oriented in any orientation, a similar effect may be
contaminating Stokes u. To cancel this systematic ef-
fect, the reported values for the VPM transfer func-
tion were evaluated by averaging each data point
with anequivalent datapoint taken in a configuration
where the cryostat was rotated by 90°. The resulting
values for q and u are shown as a function of grid-
mirror separation in Fig. 8A.

D. Circuit Model Parameter Extraction

We have applied the circuit model to data taken
using the Hertz-VPM instrument with a single
VPM having wires nearly parallel to the plane of in-
cidence. In this case, it is necessary to average over
all relevant frequencies:

�D0 �
Z

∞

0

�J 0�ν�† �D�ν��J 0�ν�ψn�ν�dν; �27�

where ψn�ν� is the normalized instrument bandpass
(approximately ν0 � 353 μm, Δν∕ν � 0.10).

The q and u data are fit to the VPMmodel using the
downhill simplex method [40]. Ten fit parameters
were varied in this minimization: the angle of inci-
dence, an offset in the grid-mirror separation, a global
polarization efficiency, a HWP phase offset, XLC, XL,
RL,XC,XCC, and the bandwidth stretch (κ). The band-
width stretch takes into account deviation from par-
allelism between the grid and mirror in the VPM.
Such an effect would cause the bandpass to appear
slightly wider than that defined by the bandpass
filter.

The best fit parameters for our circuit model are
given in Table 1. Where applicable, these values
are compared with the values estimated from the
system setup and the derived circuit values for the
grid (a � 12.5 μm and g � 67.5 μm). The resulting
models for q and u are plotted along with the data
in Fig. 6A. The reduced χ2 value for the joint �q;u�
fit is 2.1. Upon removal of five of the �q;u� pairs
where either q or u has a significant deviation from
the model, the χ2 is reduced to 1.2. From this we con-
clude that the circuit model captures the basic fea-
tures of the polarization transfer function; however,
the statistical errors are underestimated in a subset
of the measurements. Such an effect can occur as a
result of time-variable instabilities in the system
that are insufficiently mitigated by the techniques
described earlier in this section. Based upon the ob-
served performance of the system, a phase drift in
the chopper wheel for a subset of the data frames
is considered the most probable cause.

The resistance in the inductive mode, RL, is higher
than expected from the formulation given above. The
expected value is based on the conductivity of gold,
the coatings for the wires. This is an indication that
the gold coatings are compromised; the fitted resis-
tance is consistent with the base metal (tungsten,
ρ � 1.8 × 107 Ω · m [17]). The fitted value of XL is
within 30% of that derived from the numerical simu-
lation described above. We have plotted this value
shown in the middle panel of Fig. 6. The model pre-
sented here depends on the ability to identify a unit
cell for the grid; however, variations in wire spacing
violate the symmetry used to calculate the properties
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Fig. 8. A, The q and u values were measured as a function of grid-
mirror separation at 350 μm.B,Measurements of the VPMat 3mm
are also shown. The transmission-line model is in close agreement
with the infinite-wavelength approximation at this frequency;
however, the difference between the two is measurable.

Table 1. Fit Results for the 350 μm Measurements

Parameter Estimate Fit Units

Angle of incidence 20 22.83 [degrees]
Grid-mirror offset 0 −2.01 [μm]
Polarization efficiency 100 98.4 [%]
HWP phase offset 0 0.0125 [radians]
Bandwidth stretch, κ 1 1.08 [-]
RL 9.9 × 10−4a 3.4 × 10−3 [-]
XL 0.031a 0.040 [-]
XLC −0.26b

−0.27 [-]
XC - −0.43 [-]
XCC - −265 [-]
aFrom Section 4.
bFrom Marcuvitz.
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of the grid using this technique. Examination of the
grid using a microscope confirmed this concern.

In Fig. 8A, the features in Stokes q at grid-mirror
separations of approximately 200 and 400 μm are
due to trapped resonances for the inductive mode.
We note in passing that these features can be signif-
icantly reduced by modifying the VPM configuration.
In place of the mirror, one could incorporate a second
grid with wires oriented perpendicular to the first
followed by beam dump. Ideally, the brightness tem-
perature of the beam dump should match that of the
source over the beam on the sky. This architectural
change would reduce common-mode systematic ef-
fects between orthogonally polarized detectors.

E. VPM Modulation Efficiency

The modulation efficiency of the Hertz polarimeter
was experimentally observed to be ∼95%. This mea-
surement was made with the source grid in place but
in the absence of the VPM polarizer. This value is
consistent with previous measurements of the effi-
ciency of the Hertz polarimeter [2,39]. For the data
reported in Table 1 and Fig. 8, the reported efficiency,
98.4%, is that of the VPM alone. The lower modula-
tion efficiency previously reported, 85% [2], was
found to be reproducible and induced by beam mis-
alignments at the location of the VPM. The estimate
reported here for the modulation efficiency of the
VPM is a lower limit and could arise from one of sev-
eral effects. First, the circuit model assumes uniform
wire spacing and size. As such, the model represents
the average circuit parameters over the illuminated
part of the grid and does not account for variations in
parasitic coupling between the wires that are impor-
tant at high frequencies [41,42]. Treatment of this ef-
fect would require modifications to the simple circuit
model considered here. Alternatively, and more
likely, the nonunity efficiency factor could be an ar-
tifact of the system, such as a residual misalignment
of the beam on the VPM or residual uncertainty in
the Hertz efficiency calibration.

6. 3 mm VPM Tests

We have also measured the VPM at a wavelength of 3
mm (g∕λ � 0.022). We measured the response from
75–110 GHz; however, we used the 91–100 GHz por-
tion of the measured spectrum to synthesize a 10%
bandwidth to match the 350 μm measurement. The
setup for this test is shown in Fig. 9. An HP 8510 vec-
tor network analyzer was used to measure the polar-
ization state of the radiation as it is processed by the
VPM. Vertically polarized radiation is emitted from
port 1 and launched from waveguide to free space via
a feedhorn. It is then reflected by a polarizing grid
having wires oriented in the vertical direction. This
grid helped to further define the polarization state of
the radiation and limits the formation of trapped re-
flection resonances in the system. The unused polar-
ization is terminated by a free-space beam dump. An
ellipsoidal mirror is used to form a beamwaist on the
VPM. This ensures that the phase front of the radia-

tion is approximately flat at the polarization modu-
lation point. Just as for the 350 μm setup, the VPM
wires were oriented such that their projected angle is
45° with respect to the incoming polarization state. A
second, identical ellipsoidal mirror refocuses the
beam on a second feedhorn that is identical to the
first. A folding flat is used in this final free-space
path to symmetrize the optics. The orthomode trans-
ducer (OMT) [43,44] ports corresponding to the
unused polarizations are terminated by precision
waveguide loads. This mitigates the influence of po-
larizationmode conversion that can result in trapped
resonances in the beam waveguide structure.

As the grid-mirror separation is varied, the VPM
modulates the incoming (vertical) signal that we de-
fine as Stokes U in order to maintain consistency
with the 350 μm data. The modulated power is de-
tected by port 2, which is sensitive to vertically polar-
ized radiation. The 800-point spectrum of S12 over
the entirety of W-band (75 to 115 GHz) is recorded
at every grid-mirror separation. Once this is finished,
a 90° twist is added to the waveguide in port 2 to
switch the port’s sensitivity from vertical to horizon-
tal polarization. The grid-mirror separation of the
VPM is then adjusted in an identical way as pre-
viously described.

A. Data Analaysis

For comparison with the 350 μm data, we wish to
determine the response of the VPM over a 10%
bandwidth fractional bandwidth. To do this, we cal-
culate the integrated signals H�d� and V�d�:

H�d�≡
X
Δν

jSH
12�d; ν�j2; (28)

Fig. 9. The setup for the 3 mm VPM transmission test is shown.
Radiation is emitted from port 1 of the HP 8510 with a vertical
polarization. The radiation is then reflected off of the grid and col-
limated by an ellipsoidal mirror. At this point, the radiation is re-
flected off of the VPM. An identical ellipsoidal mirror follows, and a
folding flat directs the beam into a second feed that is attached to
port 2 of the HP 8510. A 90° twist is added to the waveguide to
change the sensitivity from the vertically polarized state to the
horizontally polarized state.
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V�d�≡
X
Δν

jSV
12�d; ν�j2: (29)

Here, SH
12�d; ν� and SV

12�d; ν� are the relevant scatter-
ing parameters for the case of horizontal and vertical
sensitivity, respectively, for port 2.

The next step is to calculate the relative gain of the
two channels. This can be done by noting that the
single-frequency responses for the two quantities are

H�d� � 1
2
�IH �UH cos δ�d� � VH sin δ�d��; (30)

V�d� � 1
2
�IV −UV cos δ�d� − VV sin δ�d��: (31)

Here, IH∕V , UH∕V , and VH∕V are Stokes parameters.
For each of H�d� and V�d�, we perform a linear

least-squares fit. Since the single frequency will
not fit our broadband response precisely, we do not
use this to directly calculate Stokes parameters.
Rather, we calculate a relative gain based on the un-
modulated component (Stokes I) from each fit,

f � IH
IV

: �32�

From this, Stokes u can be calculated:

u�d� � H�d� − f V�d�
H�d� � f V�d� : �33�

The results of this analysis are shown in Figure 8B.
In addition, we have plotted a VPM model using the
parameters found from the 350 μm fit, appropriately
scaled by wavelength. We found that to fit the data
required an incident angle of 19° and an offset in the
grid-mirror separation of −30 μm. No other param-
eters in the model have been adjusted. For compar-
ison, we have plotted the normalized Stokes param-
eter, u, in the infinite-wavelength limit. In this limit,
the impedance contrast is high for the inductive
mode, and the dependence on the circuit param-
eters is minimal.

7. Discussion

Figure 10 summarizes the VPM transfer function for
a single frequency for each of the models in this work
as well as the geometric limit. To emphasize the dif-
ferences in shape of the curves, for each case we have
shifted the curve to align the first minimum to lie at
zero delay. For λ ≫ a, the grid circuit is firmly in the
single-mode limit. In this case, for plane wave illumi-
nation, Eq. (2) is a good approximation for the VPM
phase delay. As the wire diameter becomes a finite
fraction of a wavelength, the impedance contrast of
the inductive circuit is reduced. The polarization re-
sponse remains a sinusoidal function of the phase de-
lay; however, the VPM reflection phase is dependent
upon the details of the grid geometry and impedance
contrast.

8. Summary

We have applied a transmission-line model to the
VPM used for the Hertz-VPM submillimeter polari-
meter and have obtained estimates for key circuit
parameters using numerical simulations. The simu-
lations represent an improvement over analytical ap-
proximations in estimating the inductance of wire
grid polarizers having 2πa ∼ g, such as those used
in this work.

At 350 μm, the VPM grids have wires that are
∼0.07λ in diameter, corresponding to a free-space
phase shift across the width of a wire that exceeds
10°. We have shown that in this regime, it is not suf-
ficient to identify the VPM phase delay with that
derived from the path difference induced by the
grid-mirror separation. The VPM transfer function
is modified from the infinite-wavelength case, both
in shape and in position. This is due to a combination
of the reactances imposed by the thickness and
spacing of the wires and the interaction of these
reactances with the variable position of the mirror.
At 3 mm, where the impedance contrast for the in-
ductive mode is higher, differences from the geo-
metric phase delay (Eq. ( 2)) are reduced, but evident.

Fig. 10. The modeled VPM reflection phase delay is shown for single frequencies at 350 and 3000 μm for the grid models obtained above.
In the limit g∕λ ≪ 1, a sinusoidal form for Stokes U is observed. As this condition is relaxed, the VPM reflection phase delay differs from
the free-space grid-mirror delay. The legend on the right shows the parameters corresponding to each of the curves.
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